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ABSTRACT 

Machine learning and artificial intelligence have profoundly transformed the landscape of 
modern engineering, providing powerful tools to model, analyse, and optimise complex systems. 
Its applicability extends across diverse domains, including engineering design optimisation and 
fluid mechanics, where traditional approaches often struggle with high computational costs or 
limited interpretability. Importantly, machine learning does not replace established methods but 
synergises with engineering disciplines, creating new opportunities to integrate data-driven 
models with physical understanding. This progress is inherently interdisciplinary, drawing on 
advances in mathematics, statistics, and computational science to build models that are both 
predictive and explainable. Several applications will be demonstrated. Physics-Informed Neural 
Networks (PINNs) have been employed to predict flow behaviour in porous media, while 
explainable machine learning has been applied to support the design optimisation of auxetic 
materials and aircraft, revealing how data-driven insights can complement physical intuition and 
knowledge. These case studies demonstrate the potential of machine learning to transform 
engineering practice. The talk concludes with a perspective on how machine learning techniques, 
when combined with engineering know-how and strengthened by interdisciplinary approaches, 
can drive future innovation in design optimization and fluid mechanics. 
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INTRODUCTION 

It can be assured that at least one of these expressions has been heard repeatedly: data-driven 
decision making, data-driven policy, data-driven design, or data-driven discovery. Perhaps data-driven 
science and data-driven engineering have also been encountered. What is so special about data-driven? 
Has data not been with us for centuries, or even millennia? After all, science and engineering have 
always relied on data (measurements, observations, experiments, and empirical correlations) to 
understand physical phenomena and to design reliable systems. From early astronomical records 
to wind-tunnel experiments and flight tests, data has long been a cornerstone of scientific 
discovery and engineering practice. The key to understanding this lies in the following paradigm 
shift: the role of data has evolved from supporting to driving. Data is no longer viewed merely as a 
byproduct of scientific and engineering practice, but increasingly as the engine of discovery itself. 

In the present era, which is greatly transformed by artificial intelligence, with machine learning 
being one of its most influential subsets, data literacy has become an essential skill for scientists 
and engineers alike. As engineers, it is possible to go further. It is possible to move beyond being 
merely data literate toward truly mastering data. The key to this is to understand and master the 
technology of machine learning. 

Based on research experience, this document shares how such technologies can be leveraged to 
address challenging engineering problems in the field of design optimization and fluid mechanics. 
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DATA-DRIVEN ENGINEERING 
The discussion begins by addressing the following question: What is data-driven engineering? 

Figure 1 illustrates the integration of data science and engineering as a unified framework for 
addressing the inherent complexity of modern engineering problems. On one side, data science, 
encompassing artificial intelligence and machine learning, provides tools for extracting patterns, 
learning representations, and constructing predictive models directly from data. On the other side, 
engineering contributes physical understanding, mathematical modeling, and statistical reasoning 
that ground these data-driven methods in real-world behavior and constraints. By combining 
these two domains, data is no longer treated merely as supporting evidence, but as an active driver 
in modeling, analysis, and decision making. This is data-driven engineering. 

It should be noted that applying machine learning to scientific and engineering problems is not 
straightforward.. Many machine learning models are designed to optimize predictive accuracy, 
yet they may violate fundamental physical principles. In addition, engineering applications often 
suffer from limited, noisy, or expensive data, since high-fidelity simulations and experiments can 
be costly to perform. These challenges mean that blindly applying standard machine learning 
techniques can lead to models that appear accurate within the training set but fail to generalize or 
provide physically meaningful insights. As a result, successful machine learning-driven 
engineering requires careful integration of physical knowledge, data efficiency, and domain-
specific modeling considerations. 
 

 
 

Figure 1: Data-driven engineering. 
 
 
DATA-DRIVEN ENGINEERING IN DESIGN OPTIMIZATION AND FLUID MECHANICS 

The most effective way to illustrate how data-driven engineering works is through concrete 
examples. To this end, the capabilities of these methods are demonstrated using selected studies 
conducted by the author, collaborators, and students in the areas of design optimization and fluid 
mechanics. A number of examples are available; however, only two are presented in this paper. 

The first example concerns the design of auxetic materials. The author was approached by his 
colleagues to support their research on understanding a specific class of auxetic materials known 
as hexachiral structures. Auxetic materials are a class of engineered materials that exhibit a 
negative Poisson’s ratio, meaning that they expand laterally when stretched and contract laterally 
when compressed. The key question then becomes how to design and optimize the configuration 
of such auxetic materials (Figure 2). Can the Poisson’s ratio be systematically optimized? Can we 
uncover the relationship between geometric parameters and the resulting Poisson’s ratio? 

The research team proposed an alternative approach by suggesting the use of machine learning. 
This direction proved to be fruitful, leading to a successful joint collaboration. From this effort, 
two journal papers were published. The first focuses on the optimization of the Poisson’s ratio, 
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specifically on identifying designs that achieve a highly negative Poisson’s ratio (Afdhal et al., 
2023). The second addresses the inverse problem of discovering auxetic designs with a near-zero 
Poisson’s ratio (Afdhal et al., 2024). We specifically leveraged a machine learning method called 
Gaussian Process Regression, which is advantageous for small data regime, typical in engineering 
problems. Gaussian Process models played a central role in this endeavor by identifying key 
relationships between design parameters and mechanical performance, while also guiding the 
discovery of structures with targeted properties. The training data were generated using finite 
element simulations, which were subsequently validated through experimental testing. 

 

 
 

Figure 2: The schematic of hexachiral material. There are three tunable parameters: the radius (𝑟), 
the thickness (𝑡), and the length (𝑙). 
 
 

 
Figure 3: A simplified schematic of Physics-informed Neural Networks. 

 
 
 

The second example comes from the field of fluid mechanics. Before presenting it, it is 
important to emphasize that for many problems in this field, the governing equations and physical 
laws are already well established. However, when machine learning is applied naively, this prior 
knowledge is sometimes overlooked, leading to models that may fit data but violate fundamental 
physical principles. Physics-informed neural networks (PINN) provide a systematic framework to 
address this issue by embedding the governing equations and physical laws directly into the 
machine learning model (Raissi et al., 2019), as can be seen in Figure 3. By doing so, PINNs ensure 
that the learned solutions remain physically consistent while benefiting from the flexibility of 
machine learning. 
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In our recent work, we use a PINN to study how fluid flows around a porous object (Nguyen 
et al., 2025). The main goal is to estimate how easily fluid can pass through the object, which is 
known as its permeability, using only information from the flow outside the object. Instead of 
relying purely on data, we teach the neural network the basic physical laws that govern fluid 
motion. This allows the model to learn the flow pattern and at the same time figure out hidden 
properties of the object, even when only limited data are available. The results closely match those 
from data, showing that the method can capture realistic flow behavior. This example shows how 
combining data with physical knowledge makes machine learning more reliable and useful for 
solving real engineering problems. 
 
SOME FINAL THOUGHTS 

Machine learning offers tremendous potential for advancing engineering practice, from 
accelerating design optimization to enabling new ways of understanding complex physical 
systems. However, these tools should not be applied naively or in isolation. Effective and 
trustworthy use of machine learning in science and engineering requires a strong fundamental, 
along with a clear understanding of the physical context. When combined with domain knowledge, 
machine learning becomes a powerful enabler rather than a black box, allowing engineers to 
extract meaningful insights, respect physical laws, and make informed decisions. Ultimately, the 
greatest impact of machine learning in engineering will come from those who understand not only 
the algorithms, but also the problems they are meant to solve. 
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