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ABSTRACT 

The use of harmonic drives in space robotic manipulators can be explained by its compactness, 
high levels of torque density and zero backlash properties. Nevertheless, the extreme conditions 
of the orbital space present extreme tribological issues that directly affect the actuator reliability, 
accuracy and service time. This review integrates current articles (2022–2025) on environmental 
impacts on lubrication, wear caused by friction and tribological failure mechanisms within Space 
robotics applications by utilizing Harmonic Drive. Specific focus is on contributions of vacuum, 
thermal extents as well as dynamic impact loads experienced during on-orbital service provision 
and capturing of non-cooperative targets. The comparison of dry and wet lubrication strategies is 
done critically in terms of wear resistance, damping capability and failure susceptibility. The 
review identifies important shortcomings in the existing methods of modelling, with the necessity 
to merge environmental tribology and actuator dynamic simulations to provide dependable 
mission planning and failure alleviation. 
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INTRODUCTION 

Robotic manipulators operating in space are increasingly being tasked with contact intensive 
tasks including satellite docking, active debris removal and capture of non-cooperative objects [1-
4]. As opposed to free flying inspection missions, such missions include inevitable impacts and 
uncontrolled transfer of impulse by the manipulator joints [5-7]. 

Harmonic Drives have been extensively used in space robotic arms because they have high 
reduction ratios, compact geometry and high positioning accuracy [6-8]. Nevertheless, in docking 
or debris capture, impact loads are directly coupled to the gear transmission and tribological 
performance is a very important factor in determining how long actuators will survive. In this 
regard, the choice of lubrication strategy is not just a wear reduction problem but a major wear 
impact load control tool [9]. 
 
MECHANICAL VULNERABILITIES OF HARMONIC DRIVES 

Harmonic drives are based on the elastic deformation of a thin walled flexspline to provide the 
torque. This allows compact and lightweight actuation, but it causes susceptibility to impulsive 
and overload conditions [10-12]. Ratcheting is one of the worst failure modes that happen when 
the impact induced torque is greater than the flexspline buckling threshold causing teeth 
disengagement and uncontrolled transmission error [10-11]. 

These transmit bursts of torque well beyond the usual operating levels in cases where sudden 
momentum exchange and a misalignment of contact during satellite docking or debris capture can 
occur [5-7]. In these circumstances, the capacity of lubrication system to dissipate energy comes 
out as a determining factor in inhibiting ratcheting and structural deformation.  
 
 
 



 24 

TRIBOLOGY DRIVEN FAILURE MECHANISMS UNDER IMPACT LOADING 
The tribological behaviour is directly involved in the way the impact loads pass through the 

Harmonic Drive. Friction and lack of damping lead to abrupt stress wave transmission to the 
flexspline teeth that hastens the wear and enhances the likelihood of ratcheting [12-14]. 

Both experimental and analytical observations have consistently indicated that under transient 
loading lubrication degradation results in higher torque ripple, focal heating and damages on the 
surface [10, 15]. These effects are magnified in the impact dominated operations and tribology is a 
primary failure driver and not a secondary performance driver. The key tribology related failure 
modes, reasons why they occur and the environmental factors are summarized in Table 1 and one 
can get a clear picture of how the lubrication and the operating conditions influence Harmonic 
Drive reliability in space [5-8, 15-16]. 

 
Table 1: Tribology driven failure mechanisms in harmonic drive actuators under impact load. 

Failure Mechanism Tribological Cause Operational Consequence 
Ratcheting High friction + impact torque Permanent transmission error 
Tooth wear Inadequate lubrication Reduced positioning accuracy 

Flexspline fatigue Repeated frictional heating Crack initiation 
Torque loss Lubricant degradation Reduced load capacity 

Stiction / cold drag High lubricant viscosity Actuator stall during start-up 
 
Figure 1 Schematic of tribology driven failure mechanisms in Harmonic Drives, showing 

ratcheting, excessive wear, torque ripple, surface adhesion/galling and friction induced heating 
under environmental stressors like vacuum, temperature extremes and impact shocks. 

 
Figure 1: Tribology-driven failure mechanisms in harmonic drive. 

 
LUBRICATION STRATEGIES FOR IMPACT DOMINATED OPERATIONS 

The major difference between dry and wet lubrication strategy used in the Harmonic Drives is 
their capacity to absorb impact energy during docking and to acquire events [13-14, 17]. 

Dry Lubrication: MoS2 dry lubricants offer low friction and environmental stability which 
indicate that they can be used in long term, low impact operations [18-21]. Nonetheless, dry 
lubrication has insignificant viscous damping, i.e. impact energy flows virtually directly to the 
gear teeth and flexspline [11]. Consequently, dry lubricated Harmonic Drives are more prone to 
ratcheting and surface fatigue at times of debris capture. 

Wet Lubrication: Hydrodynamic damping is provided by grease based lubrication systems, 
which is important to damp impulsive loads at the gear mesh [9-10]. This viscous damping causes 
impact forces to be distributed over extended time period during satellite docking or during debris 
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capture and peak contact stresses are reduced as well as the risk of flexspline buckling and 
ratcheting failure is far lower [10, 17]. 

A variety of studies prove that the application of variable joint damping (which is closely 
related to wet lubrication behavior) can significantly decrease the impact forces to be passed to 
robotic joints [17]. Wet lubrication is therefore found to be the best tribology approach to use in 
Harmonic Drives with the space missions of impact dominated space missions although wet 
lubrication is more complex to model and long term stability.  

A straight study of the sustainability, wear, shock load and impact energy dissipation between 
dry and wet lubrication is summed up in Table 2 indicating the excellent aptness of wet lubrication 
in the impact prone operations [18-24]. Figure 2 shows that dry lubricants provide vacuum 
stability but no impact damping, whereas wet lubricants provide hydrodynamic damping with 
temperature dependent viscosity. 

 
Table 2: Comparison of dry and wet lubrication in harmonic drive under space impact loads. 

Tribological aspect Dry lubrication Wet lubrication 

Wear characteristics Higher wear under 
repeated impacts 

Reduced wear due to 
lubricant film 

Impact energy dissipation Minimal damping 
capability 

High damping, absorbs 
impact energy 

Response to shock loads Direct transmission of 
impact Attenuates impact forces 

Suitability for docking / 
capture Limited Highly suitable 

 
 

 
Figure 2: Dry vs wet lubrication in harmonic drive actuator under impact load. 

 
 
MODELING AND SIMULATION OF TRIBOLOGICAL EFFECTS 

In order to model the tribological behaviour accurately in dynamic actuator models, 
tribological behaviour should be integrated in the prediction of harmonic drive survivability 
during docking and capture. It has been suggested to use hybrid reliability models and analytical 
formulations of friction to explain the torque dependent friction and accumulation of wear and 
transmission error [10, 12, 15].  

The recent research on space robot dynamics highlights that joint damping has a leading role 
in restraining vibrations and stress spread during contact occurrences caused by impact [8, 25]. 
Nevertheless, the vast majority of existing simulations continue to ignore the effect of damping of 
joints as a fixed factor, missing the effect reducing benefit of wet lubrication [13-14]. Dynamic 
models which include lubrication dependent damping are therefore necessary to make realistic 
predictions of the actuator failure thresholds during docking and debris capture. 
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CONCLUSION 
The reliability of Harmonic Drive actuated space robotic arms depends critically on tribological 

performance, especially in missions where the major effects involve impact, like docking the 
satellite and catching space debris. Under impulsive loading the major failure mechanism is still 
friction induced wear and ratcheting. Although dry lubrication offers environmental robustness 
and low friction, it does not have the energy dissipation properties needed in impact mitigation. 
Wet lubrication on the other hand provides better hydrodynamic damping and this will reduce 
the peak impact loads and the survivability of the actuators is greatly increased during the docking 
and capture manoeuvres. The development of the wet lubrication based damping models into 
dynamic simulations in the future should be a priority so that the failure can be predicted properly 
and the design of the next generation space robotic manipulators can become effective designs. 
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